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Asymptotic solution for solitary waves in a chain of elastic spheres
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We consider a solitary wave in a chain of contacting, but initially unstressed, particles between which
the compressive forcE as a function of relative approachis F=kx". By “initially unstressed” we mean
that there is zero contact force between neighboring particles that are infinitely far from the crest of the wave.
For a chain of elastic spheres in Hertzian contaet,>. In this work, n is treated as “slightly” greater than
1, and an asymptotic solution for the solitary wave is developed in terms of the associated small parameter.
The solution for the propagating velocity wave is found as a slightly perturbed Gaussian. Comparison with
numerics shows that the asymptotic solution is very good even for the fairly large valoe g)fand is
substantially more accurate than the presently available approximate solution given by Nesterenko.
[S1063-651%99)14905-5

PACS numbdps): 45.70—n, 45.10-b

I. INTRODUCTION Il. PRELIMINARIES

Consider a chain oN identical particles of masm that

The propag_atlon of compression p.ulses in granular med'ﬂneract through nonlinear springs that obey the force law
has been studied by several authors in recent y\sass e.g., F=K[x]", wherex is the distance through which the spring
Refs.[1-4], and references thergirOne problem of interest has been compressed and

in this general area is the propagation of solitary waves in
one-dimensional latticer chaing of elastic spheres.

The contact interaction between the spheres is well de- [x]=
scribed, at sufficiently small speeds, by Hertz’'s static solu-
tion for the contact of elastic spherésee, e.g., the detailed
experimental study reported in R&&]). In other words, the FOr spheres in Hertzian contaot= 3. In this paper, we only
spheres behave as point masses interacting through massi€ggsider the case> 1. . _ . _
nonlinear springs whose forde as a function of relative  Let the displacement of thién particle beu;(t), wheret is
approachx is given by F=kx2 (see, e.g., Ref[5]). The {ime. Then
constani is a function of material properties and the radius
of the spheres. Thé power in the contact force law is @ mu=k[{;_;—0;]"—k[0;—0;4,]", i=2,3,... N—1,
geometrical effect; the spring force has no linear part for 2
infinitesimal compression, though the spheres are made of a
linearly elastic material. NesterenK&] has referred to a where overdots denote time derivatives. Ferl, the first
chain of such spheres as a “sonic vacuum.” term on the right-hand side of E¢R) is dropped; while for

In this paper we consider a solitary wave that can propai=N the second term is dropped. We defing(t)
gate down a chain of such balls. Modeling the balls as point= (m/k) Y~ Duy;(t), to obtain
masses interacting through Hertzian “springgfi.e., F
=kx%?), we numerically examine a case where, as the dis-  U;=[uj_1—u]"—[ui—Uj;4]", 1=23,...N—1, (3
turbance propagates down the chain of balls, the solution
converges rapidly to a solitary wavé€lhe existence of this where again the first and second terms on the right-hand side
solitary wave has been supported by experiments and nuare dropped foi=1 andN, respectively.
merical simulations, but is not rigorously proven. A closed Let U:={u;,u,, ... ,uy}. It is easy to show by direct
form solution is currently unavailableWe then develop an  supstitution that if a functio(t) satisfies Eq(3), then so
asymptotic description of the tail qf the wave, and use it toyges the functiomz"”*l)a(at), for any positive numbex.
check the accuracy of the numerical solution fa_r from .thelt follows that if \N/(t):=l~J’(t) represents the velocities of
wave crest. Finally, we develop a new asymptotic solution . g . 2n-1)+17 7
for the traveling wave, that is valid near the wave crest. Thé€ b?”/S _|;1~the first solution, them™""%""U"(at)
new asymptotic solution is significantly more accurate thar= """ "YV(at) represents the velocities in the second

the currently available approximate solution due to NesterSolution. _ ,
enko[1]. For example, takingi=; (Hertz contadt and a=2, we

see that for every solution with velocitié4t),there is an-

other solution with velocities 2/(2t). For solitary waves in
*Fax: 814-863-7967. a chain of Hertzian spheres, this means that a disturbance of
Electronic address: anindya@crash.esm.psu.edu 25 times greater magnitude travels two times as fast.

X, Xx=0,

@

0, otherwise.
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FIG. 1. Velocities of balls as functions of time. . . . .
FIG. 2. Snapshot of velocity magnitudes at some intermediate

. A NUMERICAL STUDY time.

We now numerically study the behavior of the system in oo - 100) the end effects from the initially impacting

. 3 o "
Eq. (3) with n=3, N=100, and initial conditions end (ball 1) soon become negligible, and the shape of the
u(0)=0, i=1,2,...N, Uy (0)=1, solitary wave can thus be numerically obtained with great
accuracy(more on this later

The solitary wave is strongly localized, with essentially
all the kinetic energy in just a few balls. This may be seen in
the figure: the velocity of ball 52 is still very small when the
velocity of ball 50 reaches its maximum. Thus, the bulk of
sthe kinetic energy is concentrated within about 5 batiere
this latey.
Eventually, the disturbance reaches the end of the chain.
kBaII 100 has a velocity somewhat under(dbout 0.98%
when it finally loses contact with ball 99, ball 99 is left with
! smaller velocity(about 0.149 ball 98 is left with a still
smaller velocity, and so on. This is seen, also, in Fig. 1.

and u;(0)=0, i=2,3,...N. (4

The aim of this numerical study is twofold: first, to show as
carefully as possibléusing merely numerigshat there does
seem to exist a solitary wave solution for an infinite chain o
such balls and second, to demonstrate a numerical methd’
for finding that solution. It is worth examining the numerical
solution with some care, since it will be used later to chec
the accuracy of the asymptotic solution.

The initial conditions used here correspond to a long lin
of touching, initially stationary and unstressed balls struck a ; . .
one end by an identical ball. It will be seen below that for V& Now examine the numerical solution somewhat more

these initial conditions it is easy to identify the solitary waveca(rffu”y’ S0 as :10 jl::S.tify thezobsde;va:]ions madehin th? prle-
solution for the case where the balls are initially touching bu€¢INg paragrapns. Figures 2 and 3 show snapshots of veloc-

unstressedi.e., in the limit of zero static contact force at ity magnitudes at an instant when the disturbance hgs propa-
large distances from the wave crest gated about three quarters of the way down the chain of 100

The equations of motion with the above initial conditions P2S:
were solved numerically usingATLAB . It was observed that
a disturbance propagates down the chain of balls. Some time o [
after the start of the simulation, ball 1 bounces back with
some negative velocityabout —0.07J), loses contact with .
the rest of the chain, and maintains the same velocity there-3 " |
after. Some time later, ball 2 bounces back witlsmaaller
velocity (about—0.030. Then, ball 3 bounces back with a
still smaller velocity, and so on. This situation is seen in Fig.
1, where the velocities of some of the balls are shown as
functions of time.

As each ball bounces back with a negative velocity, it
carries some kinetic energy away with it; however, the total
energy carried away in this manner is bounded, and the sys-
tem converges rapidly to a limiting situation where the balls ~ 16°T
appear to bounce back with zero velocig.g., see the ve- ' j
locities of balls 50-52 in Fig.)1 In that limiting situation,
the disturbance apparently propagates down the chain with
no further loss of energy, no further change in shape, and in
the form of a solitary wave. For a sufficiently long chain FIG. 3. Enlarged view of a portion of Fig. 2.
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18 ; . . ; : ; k ; . kinetic energy is largely concentrated in ball 100, whose ve-
. 9 locity is significantly larger than that of ball 99, which is in
1EE% 1 turn significantly larger than that of ball 98, and so on.
** o
**** o o Eosititye vel?citjtes
elocilies
Rl Y ML b ] IV. ASYMPTOTIC BEHAVIOR OF THE TAIL
£ % °
§ y **** This section provides some analytical support for the fore-
z Y going claim that the numerical solution ahead of the wave, as
< W&l **** | shown in Figs. 2 and 3, is indeed accurate and may be
é **** ° trusted. It also provides an analytical description of how
| **** strongly localized the disturbance is in the traveling wave.
10 ", We now assume that there is a solitary wave solution for
%, infinite chain of balls in initial b ith i
. . - ) an infinite chain of balls in initial contact, but with no static
10 (SRR contact forces far from the wave crest. The displacements of
y ’ . . . . each ball are now described by the same function, just evalu-
0% 10 20 30 40 50 60 70 80 90 100 ated at different values of the argument, that is,
Ball number

u(t)=u;,..(t+b), for some positive constarih.
FIG. 4. Final velocities when balls are no more in contact. i(® i+1( ) P

Arbitrarily picking one particular ball as a reference, we ob-

Figure 2 shows the degree to which the disturbance isain an equation that the traveling wave solution must satisfy
localized: the numerical solution predicts that about 11 balls )
ahead of the crest of the wave, the speed is smaller by a u(t)=[u(t+b)—u(t)]"—[u(t)—u(t—b)]",
factor of almost 103, Such small numbers from a numeri- _ _
cal simulation are usually suspect: however, we discuss if'nereu(t) is the displacement of the reference ball, overdots
Appendk A a reason why the numerical soluti@meadof denote dgr_wanves with respect to_tlmandb is a parameter
the wave is probably accurate to several significant digitdhat specifies the speed with which the wave travels down
even though its absolute magnitude is so sntil other the cham of balls(largeb corres.polnds to small propagatlpn
words, the relative error is smallAlso, the match between yelocny). The functionu(t) satisfies the following condi-
the numerical solution presented here, and the asymptoti#ons:
solution presented later, indicates that both solutions are in-
deed accuratdAs a separate and crude check of numerical
integration accuracy, the final kinetic energy of the system,
after the disturbance had propagated all the way through thghe numerical solution suggests that the functioft)
chain of 100 balls, was found to differ from the original =y(t) is shaped similar to a symmetric hump. Accordingly,
kinetic energy(which was3) by about 10%°.] we assume a symmetrical solution. Since the equations are

Figure 3 shows a portion of Fig. 2. The behavior behindautonomous, the maximum velocity may be chosen to occur
the wave is seen more clearly in this figure. The stars indiatt=0, and therv(t) is an even function of time.

cate negative velocities, and the circles indicate positive ve- By the discussion in Sec. I may be scaled by any
locities. Examine, first, the roughly linear drdpn a log  positive number, and will merely scale the solutioft) by

scale in the velocities with which successive balls bounceggme corresponding factor depending roriwe pick b=1,
back (balls 1-42. This indicates that the rebound velocity obtaining

decreases roughly exponentially with ball number, and so the
system converges exponentially to a situation where the balls u(t)=[u(t+21)—u(t)]"—[u(t)—u(t—21)1". (6)
bounce back with zero velocity. Note that the desired nu-
merical integration accuracy Specified fanTLAB 'S solver As seen in Flg 2, the ratio of velocities of successive ba”S,
was 10 ™. The numerical solution is unable to capture thei-€., vi+1(t)/vi(t), apparently goes to zero quickly for in-
zero rebound velocity, and balls 45-70 have final velocitie$réasingi and fixedt. We now use this observation to de-
of about 10°'2 In Appendix A we discuss a reason why the Velop an asymptotic description for the tail of the wave.
numerical solution behind the wave is expected to have an The portion ahead of the wave in Fig. 2 corresponds to
accuracy roughly comparable to the ODE solver's numericamall but rapidly increasing(t). By the foregoing discus-
integration accuracy, and not be as accurate as the soluticion,
ahead of the wave. The wave is seen ahead of ball 70, and it
is seen that 3 balls away from the crest of the wave, the
velocity is about 10° times smaller. Thus, the bulk of the
kinetic energy is contained in about 5 balls, as estimated b
Nesterenkd1].

Figure 4 shows the velocities of the balls when the distur- U, —u(t+1)<u,—u(t)<u,—u(t—1)
bance has reached the end of the chain. It is seen that the
velocities of balls 1-70 are the same as at the earlier timg this regime. In the latter regime, defining
depicted in Fig. 3, since those balls have been moving with
constant velocity. It is also seen in the figure that the final p(t):=u,—u(t)

lim u(t)=0, limu(t)=u., andu(t)>0 Vt. (5

t—— t—

u(t+1)>u(t)>u(t—1)

in this regime. Similarly, the portion behind the wave corre-
¥ponds tau(t) that settles very rapidly ta.,, and so
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we have from Eq(6) (dropping some small terms 7 - - - '
) \ T pmgee
p(t)~p"(t—1). (7 sl
We change variables to(t) =e 5" and obtain from Eq(7) ~
) .. 8 s}
[s%(t)—3(t)]e”V~e "D, )
8
We assume thas(t) is a fast-increasing function of time, £ 4t
such thats?>|$|, and obtain(again dropping some small £
terms £,
'SZ(t)efs(t)%efnS(tfl).
2
We try a solution of the form
s(t)=Ae'+y(t), iz 10 8 I 4 2 0
t . . . time
where A>0 and|y(t)|<e®, and find (yet again dropping FIG. 5. Comparison between numerical solution and asymptotic
some small terms prediction far from wave crest.

2p2a2atn—Aett—y(t)__ n—nAt 3 ny(t—1) . L .
a‘A‘e“le "¢ Yll~e ™" o, Differentiating Eq.(8), we find

Taking the logarithms of both sides we get the approximate

equation v()=U(t)= — p(t)~ (aA+ Cy)e A ~Cot=C

- ta—Ae?-Cyt—C
—Ae—y(t)+2at+2 In(aA)= —ne 2Ae*'—ny(t—1), aAete oo

in which the exponentially large terms can balance only if Thus, for any positive constaf,,

a=In(n). IN[Cov(t)]~InC,+Ina+In A—Ae?+at—Cot— C;~— A€,
Fo(; thishchoice ofa,_y(t) qas a solution of the forn€,t in which the leading term is independent ©f for larget.
+Cy, where(assumingn>1) Taking logarithms again,
2Inn 2 [(ninn
Co=7—1, and Cﬁm 1 +In(Alnn)|. In{—In[Cov(t)]}~InA+at=InA+tinn ast—oo.

Note thatC; is real forA>0 only if n>1; in that casé&Cy is ~ Recalling thatv(t) is an even function of, it follows that
negative. Retaining the old symbols for brevity, we find that
N In{=In[Couv(t)]}~InA—at=InA—tInn ast——oo.
p(t)NefAe 7C0t7C1' (8)

. . We now compare this asymptotic prediction with our nu-
where the constart is indeterminate. We should now check e jea| calculations. Note that the previously computed nu-
a posteriori whether any of the simplifying assumptions o jca| solution[for the initial conditions of Eq(4)] does
made earlier are actually violated by the solution. To thlsnot converge to a wave traveling with unit velocity; that is, it

end, note that does not correspond to a delay of 1 between the motions of
p(t+1) ra N successive balls. But, as di;cussed in Sgc. I, it ca(apd
T e(mAETTECpt=Cg=Cq) (- AT = Cot = Cq) was scaled to such a solutiofiThe delay in the numerical
p(t) solution itself was estimated using the difference between

the instants of maximum velocit§in turn estimated by lo-
cally fitting parabolasfor two different balls some distance
apart in the chain.

Ball 50 is far enough from ball 1 for transients to have
decayed to numerical integration accuracy, yet far enough
from ball 100 for effects from that end to be negligible. We
p"(t—1)+O[p"(t)]=p"(t—1)[1+0(1)]=e NSt D+o) takev (t) to be the scaled velocity of ball 50, obtained from

the numerical solution. The instant of maximum velocity is
because o0(1)=e°®.Since the asymptotic solution for set tot=0. Recall that the solution ahead of the wave is
the “large” quantity s was terminated ab(1) terms, it can considered accurate in Fig. 2; this corresponds to the rising
be seen that the neglectedl) terms would not have af- part of the functiorw(t), i.e., to large negative values of
fected the solution. Checking subsequent steps in a similafaking C,=13; for graphical convenience, (n
way, it is easy to see that only(1) terms have been ne- —In[C,v(t)]) is shown in Fig. 5 for “large” negativet
glected, and so the asymptotic description of @jis valid.  values. A dashed reference line with the predicted slope of

e 1)e""t—c0< 1,

i.e., 0(1) for larget, providedA>0, anda>0 or n>1. It
follows that quantities of the foricompare with the small
terms dropped from the right-hand side of E@)]
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—a=—Inn=—In(2) is also shown for comparison. It is as may be checked by direct substitution. While this provides

seen that the slope of the numerically obtained curve appeafsPeriodic solution, note that taking() to be given by this
to be approaching the predicted asymptotic limit, This matcHunction for te (—10w/4,/10m/4), and settingu (t)=0
may be taken to mean that the asymptotic description of th@utside that interval, provides a functiart) that is three
tail of the wave, as developed above, is correct; at the samjimes differentiable as required, satisfies E4).everywhere
time, the numerical solution for the extremely small veloci-[Providedv(t)=0 is accepted as a valid solutiprand sat--
ties of balls lying ahead of the wave is also relialtas isfies the basic gorl_dltlons_on the traveling wave solution
small relative errox except for the strict |nequallty(t_)>q [Eq. (5)]: ' .
Finally, this asymptotic description of the tail shows the Thus, Nesterenko’s approximation solution is quite a
degree to which the disturbance is localized. At any instan8°0d one, and captures the essential qualitative features of
of time t (fixed), as we examine balls increasingly further the traveling wave solution. However, it has the disadvan-
away from the crest of the wave, their velocities go to zero a$29€ of being difficult to improve by higher order correc-
the reciprocal of an extremely fast-growing function: to lead-tions. In what follows, we develop an asymptotic solution
ing order, this function is the exponential of an exponential.that does not have this disadvantage.

V. NESTERENKO'S APPROXIMATE SOLUTION VI. ASYMPTOTIC SOLUTION FOR THE TRAVELING

Nesterenkd 1] has found an approximate solution for the WAVE

traveling wave, Eq(6), which may be presented as follows.  The asymptotic behavior of the tail, as developed in Sec.
First, write u(t+1) asu(t+b), whereb is treated essen- |y, is not useful for obtaining a description of the function
tially as a bookkeeping parameter. Writing a Taylor series, (t) near its crest, i.e., for comparable to the width of the
expansion about(t), wave or smaller. In this section we develop an asymptotic
solution for the traveling wave using a different approach,
du(t) b®d?u(t) and compare our results with the numerical solution pre-
dt +z a2 sented and validated in previous sections, and with Nester-
enko’s approximationEg. (10)]. The solution developed
substituting into Eq(6) and expanding it, in turn, as a power ere fails to capture the qualitative behavior of the function
series inb, we obtain v(t) for sufficiently larget; however, it does decay to zero
very fast, and so the absolute error in the solution stays small

dzu(t):§b5/2\/m dzu(t)+lb9/2\/m d*u(t) ggﬁgm.ough the relative error becomes large for large
2 dt 8 dt

2 2 4 ot .
dt dt dt Recall from Sec. Il that i¥/(t) represents the velocities of

u(t+b)=u(t)+b

1 [d2(t)/de2][dPu(t)/dtd] the balls in one solution to Ed3), o™ D/-1y/(at) for
+3 o2 any >0 also gives a solution. Note that the exponemt (
vdu(t)/dt +1)/(n—1) gets very large am approaches 1, and so we
designate
2 2,3
_ibglz(d u(t)/dt?) L O(b1?),
64" (du(t)/dt)*?
n+1 1 1+ €
Dropping terms of0(b**?3, and then setting the bookkeep- -1 2 o "= (12)
ing parameteb back to 1, we obtain
d?u(t) 3 [du(t) d?u(t) 1 [du(t) d*u(t) [As will be clear from the following discussion, the choice of
F: >N at WJFg TH W Eq. (1) is somewhat arbitrary. Any choice of the form
=1+0(e?), such as ¥ €2 or e, can be used in an iden-
1 [d?u(t)/dt?][d3u(t)/dt®] tical procedure to get a similar solution with the same form
8 du(t)/dt but different coefficients. The specific form chosen does not
affect the validity of the asymptotic series, but may affect the
1 (d2u(t)/dt?)® rapidity with which the series convergés it converges at
Y (du(t)/dt)®2 : ©) all) for any fixed value ok.] Thus,n=32 whene= 1/\5. We

now attempt to approximately solve E@) for small e.

L ; In Eqg. (6), for small € the right-hand side gets close to
The above approximation rests on the assumption that suc- .9 o i
cessive time derivatives of the functiar(t) have steadily u'(Hl])‘_chU(lt)f:rrl:(t;l)'a Wh\ll(\:/h I?ha fl;\lte dlfferemt:et r:/etr-th
decreasing magnitudes, i.e., that the width of the velocit)f'On ot the fett-hand side. yve therefore suspect that the

i : hump in the wave must get wider and wider agoes to
Waézzét'c?onggl;(;[s)/ga:tiI:filsgl?seegoéneg?{%db? the deldy=1. zero. Some numerical solutiofisot presented heresuggest
that for smalle, the width of the hump in the solitary wave is

d 25 5 roughly proportional to %
v(t)= u(t) =""co _t ' (10) Accordingly, we introduce the scaled or slow time
dt 16 J10 = et. Equation(6) becomes
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2
2d u(r7) _
d?

2 2
€ [u(7'+e)—u(7')](l+e)/(175)

~[u(n)—u(r— )N D 1)

Expanding Eq(12) as a series in terms af (using the
symbolic algebra packageaAprLE), and substitutingv(r):
=du(7)/dr, gives to lowest order

Jdv o1 div o|vI v dvI o=
€ E—i_ﬁﬁ—’_mn +Ene +0(€°)=0,
(13

where, as is common is expansions simultaneously involving
powers and logarithms of a small parameter, we treat In
essentially as a®(1) quantity compared to quantities such

ase, €2, and so or(see, e.g., Ref7)).
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In other words, since the leading order solution is a Gaussian
function, we seek a solution in the form of a perturbed
Gaussian. Substituting this form into E§2) and expanding
gives, atO(e®),

1 d3V, d2V2+24 ,dV, iy
A —oT T T
12 §,3 dr? dr 2
864
=— 187+ 1447°— = . (14)

The complementary solution to the linear ODE, E#4),
contains the fast-growing functions

expr7?) and rfTexp(rxz)dx,
0

r=6 and 12.

However, to develop a solution consistent to this order, we

Retaining and integrating the leading order term from Ed.yq ot need the general solution to E). Instead, we note

(13), we obtain

! dZV-I—VI V+VIine=B
ﬂ-ﬁ n Nne=bg,

Since V—0 as r—», By=0. Multiplying by dV/dr and
integrating again, we obtain

an arbitrary constant.

1

dv\? V2 1 Ine
48\ dr

+ — _ - 2+_ 2
ar 2|hV 4V 2V

=B,, an arbitrary constant.

SinceV—0 ast—o, B;=0 as well. Dividing byV?/2, we
obtain

11 2

2dv2

dv

1
—| +InV—=+Ine=0.
dr

2

Letting Y:=InV, we obtain

2

1/dy v Ine=0
ﬂa + —E"‘nf—,

which may be integrated to give

1
5= e—Y=(/67+B,)?

where B, is an arbitrary constant. Since, by choice of the
origin t=0 at the instant of maximum velocity, and hence

that Eq.(14) has a patrticular solution in the form of the more
slowly growing even polynomial

Vo 1+122 124
="t 5T B

(19
Since this polynomial grows more slowly than the comple-
mentary function, dropping the contribution from the latter is
in the spirit of dropping secular terms.

At the next order ine?, the equation foN,, not repro-
duced here, has the same left-hand diniedifferential op-
erato) as Eq.(14), a different polynomial on the right-hand
side, and again permits an even polynomial solution

211 6 , 48 , 96
175" 175"

Va= 5100 25" (16)
In this way each successive order in the expansion provides
even polynomials of increasingly higher order. We terminate
the expansion at second order here; however, two more terms
are provided in Appendix B.

Note that

V)= du 1du
(D=4~ cav

and so we obtain the approximation to three terms, or third
order,

du 1
v(t)= a*eXF](E_GTZJF V(1) +eVy(7) |, (17)

Y is an even function of, B, must be zero. Thus, we finally wherer=et, andV, andV, are given in Eqs(15) and(16).

obtain the leading ofirst order approximation tov as

1
exy{i—lne—GTZ

Naturally, as discussed eatrlier, this solution may be scaled up
or down, to obtain a family of faster or slower solitary wave
solutions. We can now compare the numerical solution, Nes-
terenko’s approximation, and the asymptotic solution devel-
oped above.

Guided by the solution so far, as well as the preceding Figure 6 shows the region near the crest of the wave. One
numerical results, we now assume a solution of the form hump from Nesterenko’s periodic solution, E¢LO0), is

1 2 2 4
V(7)=ex E—Ine—67- + V(1) + eV (r)+- - |.

shown plotted for comparison. The first order solution devel-
oped here is fairly good; the second order solution is better;
and the third order solutiofi.e., up toV,) is nearly indis-
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FIG. 6. Comparison between numerical solution, Nesterenko’s FIG. 8. Behavior far from the crest.

approximation, and Eq15).
(17), has small relative error until the solution has decayed to

tinguishable from the numerical solution, both in Fig. 6, asmany orders of magnitude smaller than its maximum value.

well as in Fig. 7 which shows an enlargement of a portion of

Fig. 6. VII. CONCLUSIONS
Finally, note that the asymptotic solution developed here

formally breaks down whem gets sufficiently large, e.g.,

when 7=0(1/\/€). It is therefore interesting to see if the

The problem of a solitary wave in a one-dimensional lat-
tice with power law interaction has been studied in this pa-

C per. Attention has been restricted to the case where the
solution is any good for larger values af

A : ower law indexn is greater than but close to unity; and
A feature of the true solution is that it decays to zero veryp g y

rapidly at larae distances from the crest of the wave. Thus Swhere the static contact force is zero at large distances from
pidly 9 ) ' “the wave crest. The index of greatest practical interest is

long as the_asymptouc splutlon IS truncgtgd atan prderwhergg, corresponding to Hertzian contact between elastic
the coefficient of the highest power inis negative the spheres
correct qualitative behavior will be predicted for all and P )

the absolute error in(t) will be uniformly small, though the A careful numerical solution has been used to motivate
. y ' 9 ._and guide the analysis. A separate asymptotic description of
relative error must eventually get large. As mentioned i

Appendix B, this means that the expansion may be truncatgtg?e tail of the wave has been used to validate the numerical

olution. Finally, an asymptotic solution has been developed
at \'/th V4|’ (t)'r Vs, but_n(t)rt] atVe. i (] dist for the full solitary wave. This solution is formally valid at
€ relative error In the approximation, at large distanCeyiqi,ncas from the wave crest comparable to the width of the

from the crest of the wave, can be seen by comparing thﬁ/ave. However, the strongly localized nature of the wave

solutions on a sgmﬂqg plqt. A.S seen in Fig. 8, the first t.hreeensures that the absolute error in the approximate solution is
orders of approximation give increasingly better approxima-,

1 ) . small everywhere. For the case of primary interest, ne.,
tions away from the crest, and the solution upip i.e. Eq.  _ 3, the solution is substantially more accurate than the cur-

rently available approximate solution. The sort of asymptotic
' ' ' ‘ ' ' ' ' ' ' expansion used helgerturbed Gaussiammay prove useful

165} R B Fumerical | in other types of systems as well, such as systems with in-
PRl —- ?ﬁpgnd;rder teraction laws that are slightly perturbed power laws.
-=-- Ird oraer
16 Nesterenko
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APPENDIX A: ON CATASTROPHIC CANCELLATION

The problem of catastrophic cancellation is well known
(see, e.g., Refl8]), but is briefly described here for com-
\ pleteness. Consider the problem of summing a sequence of
‘ numbers using finite precision arithmetic.
First consider summing many numbers of the same sign,
from a series that converges fast. For example, consider sum-
FIG. 7. A portion of Fig. 6. ming the series

04 -03 -02 -0t 0 01 02 03 04 05

Time
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352 353 result is accurate. Howevebehindthe wave, the velocity
€P¥=1+35+ —+ — +- increments are negative, and begin to reduce the velocity

21 3! from its maximum valug¢comparable to )1 Thus, the abso-

lute error accumulated by the integrator stays at about4.0
(the integration tolerance specified in the numerical solution
as 10 1Y) even as the true solution decays to much smaller
values. For this reason, the numerical solution ahead of the

IS \;\Ieg{vscﬂggi.der summing many numbers, both positive an ave is expected to be significantly more accurate than that
9 y P ehind the wave.

negative, such that the exact sum is a very small number. For

Carrying out the computation using double precisi@m
MATLAB ), and taking 180 terms, yields a sum that matche
MATLAB s value to 15 significant digits, i.e., the relative error

example, consider APPENDIX B: HIGHER ORDER CORRECTIONS
. 3% 35 Carrying through the procedure described in Sec. VI, we
e =1=3 e obtain (usin
21 31 gMAPLE)
(this well known example is mentioned in R¢8]). Now Ve= 313 1632 6072 576 S+ 288 8
. . . 6
taking 180 terms yields- 1.47x 102 while MATLABs value “7000" 8757 875 ' 4375 1225

is about 6.% 10" 6. Thus, the absolute error in the compu- and
tation is on the order of IC?, while the relative error is very
large indeedthe computed sum is correct to zero significant 199 791 629 814 , 2 806 752
digits). A crude explanation for this is that the largest term in Vg=— 2695 000 336 875 336 875
the series is about 8%35!~10'* With about 16 digits of
accuracy, that term can only be calculated to an absolute 11 121 696 5642 496 1536
accuracy of about I%%, and the summing procedure never t 16823757 +11 790 6257 48 125"
recovers from this loss of accuracy. Thus, the absolute error
is roughly determined by the absolute precision with which The expressions get increasingly length for the higher or-
the largest term is calculated, and quite independent of thder corrections. As shown earlier, truncating¥tr*) works
final (correcy sum. very well forn=2% or €2=1. If higher order corrections are

In the light of this discussion, consider the numerical so-used, the expansion should be truncated at an grdach
lution presented in Sec. Ill. The numerical ODE solver es-hat the functiorV,; (such asvg or Vg,as given abovehas
sentially computes a series of increments to the state vecter negative coefficient on the highest power ofThis is
as it marches forward in time. Ahead of the wave, the ve-because the asymptotic expansion developed here is valid
locities of the balls start at zero; and the increments in thenonly for 7=0(1), and isjust being used for al- because
are all positive, i.e., of the same sign. Moreover, since th&/(r) decays rapidly to zero. A positive coefficient on the
disturbance is strongly localized, the velocity incrementshighest power would eventually cause the solution to start
with successive time steps increase very rapidly, which igrowing, for large enough, rendering the solution useless
similar to summing a rapidly converging series in reversefor large . Thus,V, andVg are reasonable places to termi-
Thus, the relative error in the sum is small, and the numericahate the expansion, b is not.

lO

[1] V. F. Nesterenko, J. Appl. Mech. Tech. Phydarch, 733 [5] K. L. Johnson,Contact Mechanicg§Cambridge University

(1984). Press, Cambridge, 1985
[2] A. N. Lazaridi and V. F. Nesterenko, J. Appl. Mech. Tech. [6] V. F. Nesterenko, J. Phys. I¥, C8-729(1994).
Phys.November, 405(1985. [7] E. J. Hinch, Perturbation Methods(Cambridge University
[3] S. Sen and R. S. Sinkovits, Phys. Rev5& 6857(1996. Press, Cambridge, 1991

[4] C. Coste, E. Falcon, and S. Fauve, Phys. Rewb6E 6104 [8] G. H. Golub and C. F. Van LoaMatrix Computations2nd
(1997). ed. (Johns Hopkins University Press, Baltimore, 1290



