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Asymptotic solution for solitary waves in a chain of elastic spheres

Anindya Chatterjee*
Department of Engineering Science and Mechanics, 227 Hammond Building, Penn State University, University Park, Pennsylvan

~Received 2 December 1998!

We consider a solitary wave in a chain of contacting, but initially unstressed, particles between which
the compressive forceF as a function of relative approachx is F5kxn. By ‘‘initially unstressed’’ we mean
that there is zero contact force between neighboring particles that are infinitely far from the crest of the wave.
For a chain of elastic spheres in Hertzian contact,n5

3
2 . In this work,n is treated as ‘‘slightly’’ greater than

1, and an asymptotic solution for the solitary wave is developed in terms of the associated small parameter.
The solution for the propagating velocity wave is found as a slightly perturbed Gaussian. Comparison with
numerics shows that the asymptotic solution is very good even for the fairly large value ofn5

3
2 and is

substantially more accurate than the presently available approximate solution given by Nesterenko.
@S1063-651X~99!14905-5#

PACS number~s!: 45.70.2n, 45.10.2b
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I. INTRODUCTION

The propagation of compression pulses in granular me
has been studied by several authors in recent years~see, e.g.,
Refs.@1–4#, and references therein!. One problem of interes
in this general area is the propagation of solitary waves
one-dimensional lattices~or chains! of elastic spheres.

The contact interaction between the spheres is well
scribed, at sufficiently small speeds, by Hertz’s static so
tion for the contact of elastic spheres~see, e.g., the detaile
experimental study reported in Ref.@4#!. In other words, the
spheres behave as point masses interacting through mas
nonlinear springs whose forceF as a function of relative
approachx is given by F5kx3/2 ~see, e.g., Ref.@5#!. The
constantk is a function of material properties and the radi
of the spheres. The32 power in the contact force law is
geometrical effect; the spring force has no linear part
infinitesimal compression, though the spheres are made
linearly elastic material. Nesterenko@6# has referred to a
chain of such spheres as a ‘‘sonic vacuum.’’

In this paper we consider a solitary wave that can pro
gate down a chain of such balls. Modeling the balls as po
masses interacting through Hertzian ‘‘springs’’~i.e., F
5kx3/2), we numerically examine a case where, as the
turbance propagates down the chain of balls, the solu
converges rapidly to a solitary wave.~The existence of this
solitary wave has been supported by experiments and
merical simulations, but is not rigorously proven. A clos
form solution is currently unavailable.! We then develop an
asymptotic description of the tail of the wave, and use it
check the accuracy of the numerical solution far from
wave crest. Finally, we develop a new asymptotic soluti
for the traveling wave, that is valid near the wave crest. T
new asymptotic solution is significantly more accurate th
the currently available approximate solution due to Nes
enko @1#.

*Fax: 814-863-7967.
Electronic address: anindya@crash.esm.psu.edu
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II. PRELIMINARIES

Consider a chain ofN identical particles of massm that
interact through nonlinear springs that obey the force l
F5k@x#n, wherex is the distance through which the sprin
has been compressed and

@x#5H x, x>0,

0, otherwise.
~1!

For spheres in Hertzian contact,n5 3
2 . In this paper, we only

consider the casen.1.
Let the displacement of theith particle beûi(t), wheret is

time. Then

mü̂i5k@ ûi 212ûi #
n2k@ ûi2ûi 11#n, i 52,3, . . . ,N21,

~2!

where overdots denote time derivatives. Fori 51, the first
term on the right-hand side of Eq.~2! is dropped; while for
i 5N the second term is dropped. We defineûi(t)
5(m/k)1/(n21)ui(t), to obtain

üi5@ui 212ui #
n2@ui2ui 11#n, i 52,3, . . . ,N21, ~3!

where again the first and second terms on the right-hand
are dropped fori 51 andN, respectively.

Let U:5$u1 ,u2 , . . . ,uN%. It is easy to show by direc
substitution that if a functionŨ(t) satisfies Eq.~3!, then so
does the functiona2/(n21)Ũ(at), for any positive numbera.
It follows that if Ṽ(t):5Ũ8(t) represents the velocities o
the balls in the first solution, thena2(n21)11Ũ8(at)
5a (n11)/(n21)Ṽ(at) represents the velocities in the seco
solution.

For example, takingn5 3
2 ~Hertz contact! and a52, we

see that for every solution with velocitiesṼ(t),there is an-
other solution with velocities 25Ṽ(2t). For solitary waves in
a chain of Hertzian spheres, this means that a disturbanc
25 times greater magnitude travels two times as fast.
5912 ©1999 The American Physical Society
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III. A NUMERICAL STUDY

We now numerically study the behavior of the system
Eq. ~3! with n5 3

2 , N5100, and initial conditions

ui~0!50, i 51,2, . . . ,N, u̇1~0!51,

and u̇i~0!50, i 52,3, . . . ,N. ~4!

The aim of this numerical study is twofold: first, to show
carefully as possible~using merely numerics! that there does
seem to exist a solitary wave solution for an infinite chain
such balls and second, to demonstrate a numerical me
for finding that solution. It is worth examining the numeric
solution with some care, since it will be used later to che
the accuracy of the asymptotic solution.

The initial conditions used here correspond to a long l
of touching, initially stationary and unstressed balls struck
one end by an identical ball. It will be seen below that f
these initial conditions it is easy to identify the solitary wa
solution for the case where the balls are initially touching
unstressed~i.e., in the limit of zero static contact force a
large distances from the wave crest!.

The equations of motion with the above initial conditio
were solved numerically usingMATLAB . It was observed tha
a disturbance propagates down the chain of balls. Some
after the start of the simulation, ball 1 bounces back w
some negative velocity~about 20.071!, loses contact with
the rest of the chain, and maintains the same velocity th
after. Some time later, ball 2 bounces back with asmaller
velocity ~about20.030!. Then, ball 3 bounces back with
still smaller velocity, and so on. This situation is seen in F
1, where the velocities of some of the balls are shown
functions of time.

As each ball bounces back with a negative velocity
carries some kinetic energy away with it; however, the to
energy carried away in this manner is bounded, and the
tem converges rapidly to a limiting situation where the ba
appear to bounce back with zero velocity~e.g., see the ve
locities of balls 50–52 in Fig. 1!. In that limiting situation,
the disturbance apparently propagates down the chain
no further loss of energy, no further change in shape, an
the form of a solitary wave. For a sufficiently long cha

FIG. 1. Velocities of balls as functions of time.
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~here,N5100) the end effects from the initially impactin
end ~ball 1! soon become negligible, and the shape of
solitary wave can thus be numerically obtained with gr
accuracy~more on this later!.

The solitary wave is strongly localized, with essentia
all the kinetic energy in just a few balls. This may be seen
the figure: the velocity of ball 52 is still very small when th
velocity of ball 50 reaches its maximum. Thus, the bulk
the kinetic energy is concentrated within about 5 balls~more
on this later!.

Eventually, the disturbance reaches the end of the ch
Ball 100 has a velocity somewhat under 1~about 0.986!
when it finally loses contact with ball 99, ball 99 is left wit
a smaller velocity~about 0.149!, ball 98 is left with a still
smaller velocity, and so on. This is seen, also, in Fig. 1.

We now examine the numerical solution somewhat m
carefully, so as to justify the observations made in the p
ceding paragraphs. Figures 2 and 3 show snapshots of ve
ity magnitudes at an instant when the disturbance has pr
gated about three quarters of the way down the chain of
balls.

FIG. 2. Snapshot of velocity magnitudes at some intermed
time.

FIG. 3. Enlarged view of a portion of Fig. 2.
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Figure 2 shows the degree to which the disturbance
localized: the numerical solution predicts that about 11 b
ahead of the crest of the wave, the speed is smaller b
factor of almost 102300. Such small numbers from a numer
cal simulation are usually suspect: however, we discus
Appendix A a reason why the numerical solutionaheadof
the wave is probably accurate to several significant di
even though its absolute magnitude is so small~in other
words, the relative error is small!. Also, the match between
the numerical solution presented here, and the asymp
solution presented later, indicates that both solutions are
deed accurate.@As a separate and crude check of numeri
integration accuracy, the final kinetic energy of the syste
after the disturbance had propagated all the way through
chain of 100 balls, was found to differ from the origin
kinetic energy~which was1

2 ) by about 10210.]
Figure 3 shows a portion of Fig. 2. The behavior beh

the wave is seen more clearly in this figure. The stars in
cate negative velocities, and the circles indicate positive
locities. Examine, first, the roughly linear drop~on a log
scale! in the velocities with which successive balls boun
back ~balls 1–42!. This indicates that the rebound veloci
decreases roughly exponentially with ball number, and so
system converges exponentially to a situation where the b
bounce back with zero velocity. Note that the desired
merical integration accuracy specified forMATLAB ’s solver
was 10211. The numerical solution is unable to capture t
zero rebound velocity, and balls 45–70 have final velocit
of about 10212. In Appendix A we discuss a reason why th
numerical solution behind the wave is expected to have
accuracy roughly comparable to the ODE solver’s numer
integration accuracy, and not be as accurate as the solu
ahead of the wave. The wave is seen ahead of ball 70, a
is seen that 3 balls away from the crest of the wave,
velocity is about 1025 times smaller. Thus, the bulk of th
kinetic energy is contained in about 5 balls, as estimated
Nesterenko@1#.

Figure 4 shows the velocities of the balls when the dist
bance has reached the end of the chain. It is seen tha
velocities of balls 1–70 are the same as at the earlier t
depicted in Fig. 3, since those balls have been moving w
constant velocity. It is also seen in the figure that the fi

FIG. 4. Final velocities when balls are no more in contact
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kinetic energy is largely concentrated in ball 100, whose
locity is significantly larger than that of ball 99, which is i
turn significantly larger than that of ball 98, and so on.

IV. ASYMPTOTIC BEHAVIOR OF THE TAIL

This section provides some analytical support for the fo
going claim that the numerical solution ahead of the wave
shown in Figs. 2 and 3, is indeed accurate and may
trusted. It also provides an analytical description of ho
strongly localized the disturbance is in the traveling wave

We now assume that there is a solitary wave solution
an infinite chain of balls in initial contact, but with no stat
contact forces far from the wave crest. The displacement
each ball are now described by the same function, just ev
ated at different values of the argument, that is,

ui~ t !5ui 11~ t1b!, for some positive constantb.

Arbitrarily picking one particular ball as a reference, we o
tain an equation that the traveling wave solution must sat

ü~ t !5@u~ t1b!2u~ t !#n2@u~ t !2u~ t2b!#n,

whereu(t) is the displacement of the reference ball, overd
denote derivatives with respect to timet andb is a parameter
that specifies the speed with which the wave travels do
the chain of balls~largeb corresponds to small propagatio
velocity!. The functionu(t) satisfies the following condi-
tions:

lim
t→2`

u~ t !50, lim
t→`

u~ t !5u` , andu̇~ t !.0 ;t. ~5!

The numerical solution suggests that the functionv(t)
5u̇(t) is shaped similar to a symmetric hump. According
we assume a symmetrical solution. Since the equations
autonomous, the maximum velocity may be chosen to oc
at t50, and thenv(t) is an even function of time.

By the discussion in Sec. II,b may be scaled by any
positive number, and will merely scale the solutionu(t) by
some corresponding factor depending onn. We pick b51,
obtaining

ü~ t !5@u~ t11!2u~ t !#n2@u~ t !2u~ t21!#n. ~6!

As seen in Fig. 2, the ratio of velocities of successive ba
i.e., v i 11(t)/v i(t), apparently goes to zero quickly for in
creasingi and fixedt. We now use this observation to de
velop an asymptotic description for the tail of the wave.

The portion ahead of the wave in Fig. 2 corresponds
small but rapidly increasingu(t). By the foregoing discus-
sion,

u~ t11!@u~ t !@u~ t21!

in this regime. Similarly, the portion behind the wave corr
sponds tou(t) that settles very rapidly tou` , and so

u`2u~ t11!!u`2u~ t !!u`2u~ t21!

in this regime. In the latter regime, defining

p~ t !:5u`2u~ t !
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we have from Eq.~6! ~dropping some small terms!

p̈~ t !'pn~ t21!. ~7!

We change variables top(t)5e2s(t) and obtain from Eq.~7!

@ ṡ2~ t !2 s̈~ t !#e2s~ t !'e2ns~ t21!.

We assume thats(t) is a fast-increasing function of time
such thatṡ2@us̈u, and obtain~again dropping some sma
terms!

ṡ2~ t !e2s~ t !'e2ns~ t21!.

We try a solution of the form

s~ t !5Aeat1y~ t !,

where A.0 and uy(t)u!eat, and find ~yet again dropping
some small terms!

a2A2e2ate2Aeat2y~ t !'e2nAeat2a2ny~ t21!.

Taking the logarithms of both sides we get the approxim
equation

2Aeat2y~ t !12at12 ln~aA!52ne2aAeat2ny~ t21!,

in which the exponentially large terms can balance only

a5 ln~n!.

For this choice ofa, y(t) has a solution of the formC0t
1C1 , where~assumingn.1)

C05
2 lnn

12n
, and C15

2

12n S n ln n

n21
1 ln~A ln n! D .

Note thatC1 is real forA.0 only if n.1; in that caseC0 is
negative. Retaining the old symbols for brevity, we find th

p~ t !;e2Aeat2C0t2C1, ~8!

where the constantA is indeterminate. We should now chec
a posteriori whether any of the simplifying assumption
made earlier are actually violated by the solution. To t
end, note that

p~ t11!

p~ t !
;e~2Aeat1a2C0t2C02C1!2~2Aeat2C0t2C1!

5e2A~ea21!eat2C0!1,

i.e., o(1) for large t, providedA.0, anda.0 or n.1. It
follows that quantities of the form@compare with the smal
terms dropped from the right-hand side of Eq.~7!#

pn~ t21!1O@pn~ t !#5pn~ t21!@11o~1!#5e2ns~ t21!1o~1!,

because 11o(1)5eo(1).Since the asymptotic solution fo
the ‘‘large’’ quantity s was terminated atO(1) terms, it can
be seen that the neglectedo(1) terms would not have af
fected the solution. Checking subsequent steps in a sim
way, it is easy to see that onlyo(1) terms have been ne
glected, and so the asymptotic description of Eq.~8! is valid.
e

t

s

ar

Differentiating Eq.~8!, we find

v~ t !5u̇~ t !52 ṗ~ t !;~aAeat1C0!e2Aeat2C0t2C1

;aAeate2Aeat2C0t2C1.

Thus, for any positive constantC2 ,

ln@C2v~ t !#;ln C21 lna1 ln A2Aeat1at2C0t2C1;2Aeat,

in which the leading term is independent ofC2 for large t.
Taking logarithms again,

ln$2 ln@C2v~ t !#%; ln A1at5 ln A1t ln n as t→`.

Recalling thatv(t) is an even function oft, it follows that

ln$2 ln@C2v~ t !#%; ln A2at5 ln A2t ln n as t→2`.

We now compare this asymptotic prediction with our n
merical calculations. Note that the previously computed
merical solution@for the initial conditions of Eq.~4!# does
not converge to a wave traveling with unit velocity; that is,
does not correspond to a delay of 1 between the motion
successive balls. But, as discussed in Sec. II, it can be~and
was! scaled to such a solution.@The delay in the numerica
solution itself was estimated using the difference betwe
the instants of maximum velocity~in turn estimated by lo-
cally fitting parabolas! for two different balls some distanc
apart in the chain.#

Ball 50 is far enough from ball 1 for transients to ha
decayed to numerical integration accuracy, yet far eno
from ball 100 for effects from that end to be negligible. W
takev(t) to be the scaled velocity of ball 50, obtained fro
the numerical solution. The instant of maximum velocity
set to t50. Recall that the solution ahead of the wave
considered accurate in Fig. 2; this corresponds to the ris
part of the functionv(t), i.e., to large negative values oft.
Taking C25 1

100 for graphical convenience, ln„
2 ln@C2v(t)#… is shown in Fig. 5 for ‘‘large’’ negativet
values. A dashed reference line with the predicted slope

FIG. 5. Comparison between numerical solution and asympt
prediction far from wave crest.
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2a52 ln n52 ln( 3
2 ) is also shown for comparison. It i

seen that the slope of the numerically obtained curve app
to be approaching the predicted asymptotic limit. This ma
may be taken to mean that the asymptotic description of
tail of the wave, as developed above, is correct; at the s
time, the numerical solution for the extremely small velo
ties of balls lying ahead of the wave is also reliable~has
small relative error!.

Finally, this asymptotic description of the tail shows t
degree to which the disturbance is localized. At any inst
of time t ~fixed!, as we examine balls increasingly furth
away from the crest of the wave, their velocities go to zero
the reciprocal of an extremely fast-growing function: to lea
ing order, this function is the exponential of an exponent

V. NESTERENKO’S APPROXIMATE SOLUTION

Nesterenko@1# has found an approximate solution for th
traveling wave, Eq.~6!, which may be presented as follow
First, write u(t11) as u(t1b), whereb is treated essen
tially as a bookkeeping parameter. Writing a Taylor ser
expansion aboutu(t),

u~ t1b!5u~ t !1b
du~ t !

dt
1

b2

2!

d2u~ t !

dt2
1¯

substituting into Eq.~6! and expanding it, in turn, as a powe
series inb, we obtain

d2u~ t !

dt2
5

3

2
b5/2Adu~ t !

dt

d2u~ t !

dt2
1

1

8
b9/2Adu~ t !

dt

d4u~ t !

dt4

1
1

8
b9/2

@d2~ t !/dt2#@d3u~ t !/dt3#

Adu~ t !/dt

2
1

64
b9/2

„d2u~ t !/dt2…3

„du~ t !/dt…3/2
1O~b13/2!.

Dropping terms ofO(b13/2), and then setting the bookkeep
ing parameterb back to 1, we obtain

d2u~ t !

dt2
5

3

2
Adu~ t !

dt

d2u~ t !

dt2
1

1

8
Adu~ t !

dt

d4u~ t !

dt4

1
1

8

@d2u~ t !/dt2#@d3u~ t !/dt3#

Adu~ t !/dt

2
1

64

„d2u~ t !/dt2…3

„du~ t !/dt…3/2
. ~9!

The above approximation rests on the assumption that
cessive time derivatives of the functionu(t) have steadily
decreasing magnitudes, i.e., that the width of the velo
wavev(t)5du(t)/dt is large compared to the delayb51.

Equation~9! is satisfied~see Ref.@1#! by

v~ t !5
du~ t !

dt
5

25

16
cos4S 2t

A10
D , ~10!
rs
h
e
e

-

t

s
-
l.

s

c-

y

as may be checked by direct substitution. While this provid
a periodic solution, note that takingv(t) to be given by this
function for tP(2A10p/4,A10p/4), and settingv(t)[0
outside that interval, provides a functionv(t) that is three
times differentiable as required, satisfies Eq.~9! everywhere
@providedv(t)[0 is accepted as a valid solution#, and sat-
isfies the basic conditions on the traveling wave solut
except for the strict inequalityv(t).0 @Eq. ~5!#.

Thus, Nesterenko’s approximation solution is quite
good one, and captures the essential qualitative feature
the traveling wave solution. However, it has the disadv
tage of being difficult to improve by higher order corre
tions. In what follows, we develop an asymptotic soluti
that does not have this disadvantage.

VI. ASYMPTOTIC SOLUTION FOR THE TRAVELING
WAVE

The asymptotic behavior of the tail, as developed in S
IV, is not useful for obtaining a description of the functio
v(t) near its crest, i.e., fort comparable to the width of the
wave or smaller. In this section we develop an asympto
solution for the traveling wave using a different approac
and compare our results with the numerical solution p
sented and validated in previous sections, and with Nes
enko’s approximation@Eq. ~10!#. The solution developed
here fails to capture the qualitative behavior of the funct
v(t) for sufficiently larget; however, it does decay to zer
very fast, and so the absolute error in the solution stays sm
even though the relative error becomes large for la
enought.

Recall from Sec. II that ifṼ(t) represents the velocities o
the balls in one solution to Eq.~3!, a (n11)/(n21)Ṽ(at) for
any a.0 also gives a solution. Note that the exponentn
11)/(n21) gets very large asn approaches 1, and so w
designate

n11

n21
5

1

e2
or n5

11e2

12e2
. ~11!

@As will be clear from the following discussion, the choice
Eq. ~11! is somewhat arbitrary. Any choice of the formn
511O(e2), such as 11e2 or ee2

, can be used in an iden
tical procedure to get a similar solution with the same fo
but different coefficients. The specific form chosen does
affect the validity of the asymptotic series, but may affect t
rapidity with which the series converges~if it converges at

all! for any fixed value ofe.# Thus,n5 3
2 whene51/A5. We

now attempt to approximately solve Eq.~6! for small e.
In Eq. ~6!, for small e the right-hand side gets close t

u(t11)22u(t)1u(t21), which is a finite difference ver-
sion of the left-hand side. We therefore suspect that
hump in the wave must get wider and wider ase goes to
zero. Some numerical solutions~not presented here! suggest
that for smalle, the width of the hump in the solitary wave i
roughly proportional to 1/e2.

Accordingly, we introduce the scaled or slow timet
5et. Equation~6! becomes
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e2
d2u~t!

dt2
5@u~t1e!2u~t!#~11e2!/~12e2!

2@u~t!2u~t2e!#~11e2!/~12e2!. ~12!

Expanding Eq.~12! as a series in terms ofe ~using the
symbolic algebra packageMAPLE!, and substitutingV(t):
5du(t)/dt, gives to lowest order

e4S dV

dt
1

1

24

d3V

dt3
1

dV

dt
ln V1

dV

dt
ln e D 1O~e6!50,

~13!

where, as is common is expansions simultaneously involv
powers and logarithms of a small parameter, we treate
essentially as anO(1) quantity compared to quantities suc
ase, e2, and so on~see, e.g., Ref.@7#!.

Retaining and integrating the leading order term from E
~13!, we obtain

1

24

d2V

dt2
1V ln V1V ln e5B0 , an arbitrary constant.

Since V→0 as t→`, B050. Multiplying by dV/dt and
integrating again, we obtain

1

48S dV

dt D 2

1
V2

2
ln V2

1

4
V21

ln e

2
V2

5B1 , an arbitrary constant.

SinceV→0 ast→`, B150 as well. Dividing byV2/2, we
obtain

1

24

1

V2 S dV

dt D 2

1 ln V2
1

2
1 ln e50.

Letting Y:5 ln V, we obtain

1

24S dY

dt D 2

1Y2
1

2
1 ln e50,

which may be integrated to give

1

2
2 ln e2Y5~A6t1B2!2,

where B2 is an arbitrary constant. Since, by choice of t
origin t50 at the instant of maximum velocity,V and hence
Y is an even function oft, B2 must be zero. Thus, we finall
obtain the leading orfirst order approximation toV as

expS 1

2
2 lne26t2D .

Guided by the solution so far, as well as the preced
numerical results, we now assume a solution of the form

V~t!5expS 1

2
2 ln e26t21e2V2~t!1e4V4~t!1¯ D .
g

.

g

In other words, since the leading order solution is a Gauss
function, we seek a solution in the form of a perturb
Gaussian. Substituting this form into Eq.~12! and expanding
gives, atO(e6),

1

12

d3V2

dt3
23t

d2V2

dt2
124t2

dV2

dt
224tV2

5218t1144t32
864

5
t5. ~14!

The complementary solution to the linear ODE, Eq.~14!,
contains the fast-growing functions

exp~r t2! and tE
0

t

exp~rx2!dx, r 56 and 12.

However, to develop a solution consistent to this order,
do not need the general solution to Eq.~14!. Instead, we note
that Eq.~14! has a particular solution in the form of the mo
slowly growing even polynomial

V252
1

20
1

12

5
t22

12

5
t4. ~15!

Since this polynomial grows more slowly than the comp
mentary function, dropping the contribution from the latter
in the spirit of dropping secular terms.

At the next order ine2, the equation forV4 , not repro-
duced here, has the same left-hand side~or differential op-
erator! as Eq.~14!, a different polynomial on the right-han
side, and again permits an even polynomial solution

V452
211

2100
1

6

25
t21

48

175
t42

96

175
t6. ~16!

In this way each successive order in the expansion prov
even polynomials of increasingly higher order. We termin
the expansion at second order here; however, two more te
are provided in Appendix B.

Note that

V~t!5
du

dt
5

1

e

du

dt
,

and so we obtain the approximation to three terms, or th
order,

v~ t !5
du

dt
'expS 1

2
26t21e2V2~t!1e4V4~t! D , ~17!

wheret5et, andV2 andV4 are given in Eqs.~15! and~16!.
Naturally, as discussed earlier, this solution may be scaled
or down, to obtain a family of faster or slower solitary wav
solutions. We can now compare the numerical solution, N
terenko’s approximation, and the asymptotic solution dev
oped above.

Figure 6 shows the region near the crest of the wave. O
hump from Nesterenko’s periodic solution, Eq.~10!, is
shown plotted for comparison. The first order solution dev
oped here is fairly good; the second order solution is bet
and the third order solution~i.e., up toV4) is nearly indis-
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tinguishable from the numerical solution, both in Fig. 6,
well as in Fig. 7 which shows an enlargement of a portion
Fig. 6.

Finally, note that the asymptotic solution developed h
formally breaks down whent gets sufficiently large, e.g.
when t5O(1/Ae). It is therefore interesting to see if th
solution is any good for larger values oft.

A feature of the true solution is that it decays to zero ve
rapidly at large distances from the crest of the wave. Thus
long as the asymptotic solution is truncated at an order wh
the coefficient of the highest power int is negative, the
correct qualitative behavior will be predicted for allt, and
the absolute error inv(t) will be uniformly small, though the
relative error must eventually get large. As mentioned
Appendix B, this means that the expansion may be trunca
at V2 , V4 , or V8 , but not atV6 .

The relative error in the approximation, at large distan
from the crest of the wave, can be seen by comparing
solutions on a semilog plot. As seen in Fig. 8, the first th
orders of approximation give increasingly better approxim
tions away from the crest, and the solution up toV4 , i.e., Eq.

FIG. 6. Comparison between numerical solution, Nesterenk
approximation, and Eq.~15!.

FIG. 7. A portion of Fig. 6.
s
f

e
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re

n
ed

s
e

e
-

~17!, has small relative error until the solution has decayed
many orders of magnitude smaller than its maximum val

VII. CONCLUSIONS

The problem of a solitary wave in a one-dimensional l
tice with power law interaction has been studied in this p
per. Attention has been restricted to the case where
power law indexn is greater than but close to unity; an
where the static contact force is zero at large distances f
the wave crest. The index of greatest practical interest in
5 3

2 , corresponding to Hertzian contact between elas
spheres.

A careful numerical solution has been used to motiv
and guide the analysis. A separate asymptotic descriptio
the tail of the wave has been used to validate the numer
solution. Finally, an asymptotic solution has been develo
for the full solitary wave. This solution is formally valid a
distances from the wave crest comparable to the width of
wave. However, the strongly localized nature of the wa
ensures that the absolute error in the approximate solutio
small everywhere. For the case of primary interest, i.e.n
5 3

2 , the solution is substantially more accurate than the c
rently available approximate solution. The sort of asympto
expansion used here~perturbed Gaussian! may prove useful
in other types of systems as well, such as systems with
teraction laws that are slightly perturbed power laws.
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APPENDIX A: ON CATASTROPHIC CANCELLATION

The problem of catastrophic cancellation is well know
~see, e.g., Ref.@8#!, but is briefly described here for com
pleteness. Consider the problem of summing a sequenc
numbers using finite precision arithmetic.

First consider summing many numbers of the same s
from a series that converges fast. For example, consider s
ming the series

’s FIG. 8. Behavior far from the crest.
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e35511351
352

2!
1

353

3!
1¯ .

Carrying out the computation using double precision~in
MATLAB !, and taking 180 terms, yields a sum that match
MATLAB ’s value to 15 significant digits, i.e., the relative err
is very small.

Now consider summing many numbers, both positive a
negative, such that the exact sum is a very small number.
example, consider

e235512351
352

2!
2

353

3!
1¯

~this well known example is mentioned in Ref.@8#!. Now
taking 180 terms yields21.4731022 while MATLAB ’s value
is about 6.3310216. Thus, the absolute error in the comp
tation is on the order of 1022, while the relative error is very
large indeed~the computed sum is correct to zero significa
digits!. A crude explanation for this is that the largest term
the series is about 3535/35!'1014. With about 16 digits of
accuracy, that term can only be calculated to an abso
accuracy of about 1022, and the summing procedure nev
recovers from this loss of accuracy. Thus, the absolute e
is roughly determined by the absolute precision with wh
the largest term is calculated, and quite independent of
final ~correct! sum.

In the light of this discussion, consider the numerical s
lution presented in Sec. III. The numerical ODE solver
sentially computes a series of increments to the state ve
as it marches forward in time. Ahead of the wave, the
locities of the balls start at zero; and the increments in th
are all positive, i.e., of the same sign. Moreover, since
disturbance is strongly localized, the velocity increme
with successive time steps increase very rapidly, which
similar to summing a rapidly converging series in rever
Thus, the relative error in the sum is small, and the numer
h.
s

d
or

t

te

or

e

-
-
tor
-

m
e
s
is
.

al

result is accurate. However,behind the wave, the velocity
increments are negative, and begin to reduce the velo
from its maximum value~comparable to 1!. Thus, the abso-
lute error accumulated by the integrator stays at about 10212

~the integration tolerance specified in the numerical solut
was 10211) even as the true solution decays to much sma
values. For this reason, the numerical solution ahead of
wave is expected to be significantly more accurate than
behind the wave.

APPENDIX B: HIGHER ORDER CORRECTIONS

Carrying through the procedure described in Sec. VI,
obtain ~usingMAPLE!

V652
313

7000
1

1632

875
t22

6072

875
t41

576

4375
t61

288

1225
t8

and

V852
199 791

2 695 000
1

629 814

336 875
t22

2 806 752

336 875
t4

1
11 121 696

1 684 375
t61

5 642 496

11 790 625
t82

1536

48 125
t10.

The expressions get increasingly length for the higher
der corrections. As shown earlier, truncating atO(t4) works
very well for n5 3

2 or e25 1
5 . If higher order corrections are

used, the expansion should be truncated at an orderj such
that the functionV2 j ~such asV6 or V8 ,as given above! has
a negative coefficient on the highest power oft. This is
because the asymptotic expansion developed here is v
only for t5O(1), and isjust being used for allt because
V(t) decays rapidly to zero. A positive coefficient on th
highest power would eventually cause the solution to s
growing, for large enought, rendering the solution useles
for larget. Thus,V4 andV8 are reasonable places to term
nate the expansion, butV6 is not.
@1# V. F. Nesterenko, J. Appl. Mech. Tech. Phys.March , 733
~1984!.

@2# A. N. Lazaridi and V. F. Nesterenko, J. Appl. Mech. Tec
Phys.November, 405 ~1985!.

@3# S. Sen and R. S. Sinkovits, Phys. Rev. E54, 6857~1996!.
@4# C. Coste, E. Falcon, and S. Fauve, Phys. Rev. E56, 6104

~1997!.
@5# K. L. Johnson,Contact Mechanics~Cambridge University
Press, Cambridge, 1985!.

@6# V. F. Nesterenko, J. Phys. IV4, C8-729~1994!.
@7# E. J. Hinch, Perturbation Methods~Cambridge University

Press, Cambridge, 1991!.
@8# G. H. Golub and C. F. Van Loan,Matrix Computations, 2nd

ed. ~Johns Hopkins University Press, Baltimore, 1990!.


